
Bear Season: Building a Fake Stock 
Market in Functional Kotlin

Iain Schmitt
SPS Tech Jam 2025



demo.iainschmitt.com



My exchange worked backwards from some technologies I 
wanted to work with, not a normal way of picking a project

• Javalin: similar to ASP.NET minimal API
• Kafka: used in Assortment
• Kotlin: F# Kafka transferability 

concerns, used at SPS, no ‘mixed 
paradigm’ issues
• WebSockets: Not another pure REST 

API side project!
• Session-based auth: wanted to do it 

once
• Shadcn: less frontend emphasis, nice 

components otherwise



Finding out about patio11’s Stockfigher fake stock exchange 
piqued my interest and checked a few boxes for an actual project



Important primitive: order book shows price and quantity of buy, 
sell orders for a single asset

• Bid: existing offers to buy
• Ask: existing offers to sell
• Quote: highest bid/smallest ask, 71¢/74¢
• Spread: difference between lowest ask 

and highest bid
• Limit orders vs. market orders: 

interaction with order book

Example Order Book for MNAD

Price Volume

Asks Offers to 
Sell MNAD

76¢ 200

75¢ 15

74¢ 10

3¢ spread

Bids Offers to 
Buy MNAD

71¢ 3

70¢ 5



What will happen if someone submits a limit order to buy 2 
shares of MNAD at 72¢?

Price Volume

Asks Offers to 
Sell MNAD

76¢ 200

75¢ 15

74¢ 10

3¢ spread

Bids Offers to 
Buy MNAD

71¢ 3

70¢ 5

Price Volume

Asks Offers to 
Sell MNAD

76¢ 200
75¢ 15
74¢ 10

2¢ spread

Bids Offers to 
Buy MNAD

72¢ 2
71¢ 3
70¢ 5



What will happen if someone submits a limit order to buy 4 
shares of MNAD at 74¢?

Price Volume

Asks Offers to 
Sell MNAD

76¢ 200
75¢ 15
74¢ 10

2¢ spread

Bids Offers to 
Buy MNAD

72¢ 2
71¢ 3
70¢ 5

Price Volume

Asks Offers to 
Sell MNAD

76¢ 200
75¢ 15
74¢ 6

2¢ spread

Bids Offers to 
Buy MNAD

72¢ 2
71¢ 3
70¢ 5



What will happen if someone submits a market order to sell 2 
shares of MNAD?

Price Volume

Asks Offers to 
Sell MNAD

76¢ 200
75¢ 15
74¢ 6

2¢ spread

Bids Offers to 
Buy MNAD

72¢ 2
71¢ 3
70¢ 5

Price Volume

Asks Offers to 
Sell MNAD

76¢ 200
75¢ 15
74¢ 6

3¢ spread

Bids Offers to 
Buy MNAD

72¢ 2
71¢ 3
70¢ 5



Most important “moving parts” of the model are the exchange 
and the market maker

• Exchange
• Source of truth, authentication for clients
• Market, limit orders, order cancelation
• Pushes quote changes, other messages over 

WebSockets to clients

• Noise Traders
• Client service
• Submit random buy, sell market orders

• Market Maker
• Client service like the noise traders
• Places limit orders for noise traders to trade 

against
• Reacts to quote changes



Market makers have no perspective on the value of an asset, and 
my market maker has very simple logic

Market Making Logic
1. Market maker selects initial quote, 

submits buy & sell limit orders
2. Wait for WebSocket message with 

new quote
3. When new quote received, cancel all 

of its orders
1. If quote shifts higher, submit higher buy 

& sell limit orders: 71/74 to 72/75
2. If quote shifts lower, submit lower buy 

& sell limit orders: 71/74 to 70/73
3. Can widen spreads as necessary

4. This is pretty easy to game

Order Book

Price Volume

Asks

76¢ 200

75¢ 15

74¢ 10

3¢ spread

Bids
71¢ 3

70¢ 5



Because noise traders gradually lose credits, new ones need to 
be seeded from market maker funds

Price Volume

Asks
76¢ 200
75¢ 15
74¢ 10

3¢ spread

Bids
71¢ 3
70¢ 5



Difficult to exaggerate how much more sophisticated most real 
exchanges are by comparison

• Millions of live orders, millions of 
messages per second

• Sequencer: single point of failure, 
~100 lines of C

• Can’t multithread as much as 
you’d think

• “How to Build an Exchange” talks 
from Brian Nigito, Rachel 
Wonnacott

• Protocols: OUCH, SOUP, SIP, 
ITCH, etc.



Takeaway: Kotlin has a small learning curve, fantastic language 
to work with

• Null safety
• Coroutines
• Concise classes
• Extension properties & 

functions
• Unit type vs. void
• Single-expression 

functions
• Overall more syntax, no 
static keyword

val a: String = "abc"
val b: String? = null

class Orchestrator(
    private val orchestratorEmail: String,
    private val password: String,
    private val ticker: Ticker,
    kafkaConfig: KafkaSSLConfig
) {
    private val consumer = 
AppKafkaConsumer(kafkaConfig, "test-consumer-group")
    //... 
}

delay(1.seconds)

private inline fun <T> withSemaphore(semaphore: 
Semaphore, action: () -> T): T

fun close() = connection.close()



Takeaway: Would be nice to have more language-level functional 
programming support, but Arrow is very powerful

• Disclaimer: this is not idiomatic 
Kotlin!

• DSLs for Either, Option types
• Made possible by Kotlin DSL syntax
• F# computation expressions 

comparison

• Either.catch: FP idiomatic 
exception handling
• No language-level support
• Other niceties provided here

suspend fun getStartingState(
    exchangeRequestDto: ExchangeRequestDto
): Either<ClientFailure, StartingState> {
    return either {
        val quote = 
getQuote(exchangeRequestDto).bind()
        val positions = 
getUserLongPositions(exchangeRequestDto).bind()
        val orders = 
getUserOrders(exchangeRequestDto).bind()
        StartingState(quote, positions, orders)
    }
}



Takeaway: Would be nice to have more language-level functional 
programming support, but Arrow is very powerful

• Disclaimer: this is not idiomatic 
Kotlin!

• DSLs for Either, Option types
• Made possible by Kotlin DSL syntax
• F# computation expressions 

comparison

• Either.catch: FP idiomatic 
exception handling
• No language-level support
• Other niceties provided here

either {
    val passwordHash = 
BCrypt.hashpw(dto.password, BCrypt.gensalt())
    ensure(!emailPresent(dto.email)) { 
 raise(400 to "Account for `${dto.email}` 
already exists") 
 }
 Either.catch {
        db.query { conn -> //... }
 }.mapLeft { error -> //... } 
}



Takeaway: market maker initially worked itself into a tizzy that 
showed how important request/response timing was

data class Quote(
    val ticker: Ticker,
    val bid: Int,
    val ask: Int,
)

Price Volume

Asks
76¢ 200
75¢ 15
74¢ 10

3¢ spread

Bids
71¢ 3
70¢ 5



Takeaway: market maker initially worked itself into a tizzy, 
showed importance of important request/response timing



Takeaway: market maker initially worked itself into a tizzy, 
showed importance of important request/response timing



Takeaway: market maker initially worked itself into a tizzy, 
showed importance of important request/response timing



Takeaway: market maker initially worked itself into a tizzy that 
showed how important request/response timing was

data class Quote(
    val ticker: Ticker,
    val bid: Int,
    val ask: Int,
    val triggerTimestamp: 

Long,)

Price Volume

Asks
76¢ 200
75¢ 15
74¢ 10

3¢ spread

Bids
71¢ 3
70¢ 5



Workflow takeaway: very helpful to record setbacks in README, 
and Claude served as my ‘best available reviewer’



Other takeaways: overall satisfied with lessons learned with the 
technologies used, but some Kakfa annoyances

• Concurrency & state
• Maintaining invariants, large state space challenge
• Downey’s ‘Little Book of Semaphores’ quite useful

• Javalin
• Generally fine
• No coroutine support, Ktor better

• SQLite
• Easy workflow: checking into Git, rollbacks
• Missed opportunity to use ksqlDB

• Kafka
• Could not successfully place behind HTTP proxy 
• VPS hosted, single-broker, keystore authentication
• Inspired my ‘Kafka in One File’ blog post
• Memory hog



Final Note and Questions

• Further development possibilities
• Actual client UI
• More event stream persistence
• More order types
• Find some way to shoehorn F# back in

• Thank you for coming to this talk!
• Questions?


