Bear Season: Building a Fake Stock
Market in Functional Kotlin

lain Schmitt
SPS Tech Jam 2025

demo.i1ainschmitt.com

My exchange worked backwards from some technologies |
wanted to work with, not a normal way of picking a project

« Javalin: similar to ASP.NET minimal APl @ /
« Kafka: used in Assortment README
» Kotlin: F# Kafka transferability Purpose
¢ .
COnCG.rnS, l.'lsed at SPS’ no mlxed In Janurary 2025 | wanted to find an excuse to work with the following technologies
paradigm’ issues « Javalin
¢ Kotlin
 WebSockets: Not another pure REST + WebSockets
. . ¢ Shadcn Component Librar
API side project! e
. . e Session-based auth (https://github.com/stolinski/drop-in)
° SeSSIOn-based aUth: Wanted to do It This repository is a playground for working on a grab bag of these technologies, |

O n C e probably won't find a way to shoehorn all of these in

Active Topic Notes

« Shadcn: less frontend emphasis, nice
components otherwise

Finding out about patioll’s Stockfigher fake stock exchange
pigued my interest and checked a few boxes for an actual project

— Kalzumeus

Developing In Stockfighter With No
Trading Experience

Starfighter is a company which makes fun programming challenges. One of our goals is ° cparge
inspiring engineers to take a whack at problems they might assume are “too difficult for i
me.” Both sets of levels for our first game, Stockfighter, give copious opportunities for

this: one set has you do algorithmic trading and one set has you do low-level C and

assembly coding, reverse engineering, and security research.

Important primitive: order book shows price and quantity of buy,
sell orders for a single asset

* Bid: existing offers to buy Example Order Book for MNAD
* Ask: existing offers to sell Price Volume
* Quote: highest bid/smallest ask, 71¢/74¢
« Spread: difference between lowest ask Offers to
and highest bid SR AL
* Limit orders vs. market orders: - d
interaction with order book L EPIEE
s Offers to /1¢ 3
% 1 BuyMNAD [704 =

What will happen if someone submits a limit order to buy 2
shares of MNAD at 72¢?

Price Volume
76¢ 200
Offers to
Asks Sell MNAD 75¢ 15
74¢ 10
3¢ spread
Bids Offers to 71¢ 3
Buy MNAD 70¢ 5

Price Volume
76¢ 200
Offers to
Asks Sell MNAD 75¢ 15
74¢ 10
2¢ spread
: Offers to _
Bids Buy MNAD 71¢ 3
70¢

What will happen if someone submits a limit order to buy 4
shares of MNAD at 74¢?

Price Volume

Price Volume
76¢ 200
Offers to
Asks Sell MNAD 75¢ 15
74¢ 10
2¢ spread
72¢
: Offers to
Bids Buy MNAD 71¢ 3

70¢

76¢ 200
Offers to
Asks Sell MNAD 75¢ 15
2¢ spread
72¢
: Offers to
Bids Buy MNAD 71¢ 3
70¢

What will happen if someone submits a market order to sell 2
shares of MNAD?

Price Volume

Price Volume
Offers to
Sell MNAD
2¢ spread
72¢
: Offers to
Bids Buy MNAD 71¢ 3

70¢

Offers to
Sell MNAD
3¢ spread
: Offers to
Bids Buy MNAD 71¢ 3
70¢ 5

Most important “moving parts” of the model are the exchange
and the market maker

 Exchange

 Source of truth, authentication for clients
 Market, limit orders, order cancelation

Exchange
» Pushes quote changes, other messages over Service
WebSockets to clients
* Noise Traders HTTP

» Client service
« Submit random buy, sell market orders

e Market Maker
* Client service like the noise traders Market Maker

e Places limit orders for noise traders to trade
against

* Reacts to quote changes

Noise Trader

Market makers have no perspective on the value of an asset, and
my market maker has very simple logic

Order Book

Price Volume

3¢ spread

Bids

71¢

3

70¢

5

Market Making Logic

Market maker selects initial quote,
submits buy & sell limit orders

Wait for WebSocket message with
new guote

When new quote received, cancel all
of its orders

1. If quote shifts higher, submit higher buy
& sell limit orders: 711/74 to 72/75

2. If quote shifts lower, submit lower buy
& sell limit orders: 711/74 to 70/73

3. Can widen spreads as necessary
This is pretty easy to game

Because noise traders gradually lose credits, new ones need to
be seeded from market maker funds

Price Volume
76¢ 200
Asks 795¢ 15
74¢ 10
3¢ spread
Bids /1¢ -

/70¢ 5

HTTP

Exchange
Service
1]
:
1
1
_____ :
Market Maker WS

Topic

Noise Trader p sl

Orchestrator Kafka

—_—

Orchestrator
Service

/
/

/
Creates P

-~
—

Difficult to exaggerate how much more sophisticated most real
exchanges are by comparison

* Millions of live orders, millions of
messages per second

* Sequencer: single point of failure,
~100 lines of C

e Can’t multithread as much as
you’d think

« “How to Build an Exchange” talks
from Brian Nigito, Rachel
Wonnacott

- Protocols: OUCH, SOUP, SIP,
ITCH, etc.

Sequencer Highly Specialised Messge Bus

Matching Market Data Retransmission
Engine Provider Service

1 1
------------------------ Locpodoea

| .]
v
AEEY Market Market
' Participant Participant
1
: UDP with Exchange-]

Specific Layer 7 Protocol

—————————————— ——

Takeaway: Kotlin has a small learning curve, fantastic language
to work with

(val a: String = "abc"
* Null safety val b: String? = null
 Coroutines class Orchestrator(
private val orchestratorEmail: String,
e Concise classes private val password: String,
private val ticker: Ticker,
e Extension properties & kafkaConfig: KafkaSSLConfig
:) {
functions private val consumer =

AppKafkaConsumer(kafkaConfig, "test-consumer-group")

}

delay(1.seconds)

e Unit typevs.void

« Single-expression
functions

private inline fun <T> withSemaphore(semaphore:

. Overa}l more syntax, no Semaphore, action: () -> T): T
static keyword

fun close() = connection.close()

Takeaway: Would be nice to have more language-level functional
programming support, but Arrow is very powerful

* Disclaimer: this is not idiomatic 'suspend fun getStartingState(
Kotlin! exchangeRequestDto: ExchangeRequestDto

. : .): Either<ClientFailure, StartingState> {
DSLs for Either, Option types e Ghhar 4

« Made possible by Kotlin DSL syntax val quote =
» F# computation expressions getQuote(exchangeRequestDto).bind()
comparison val positions =
. Either.catch:EP idiomatic getUserLsg%Pgiézigni(exchangeRequestDto) .bind()
exception handling getUserOrders(exchangeRequestDto) .bind()
- No language-level support StartingState(quote, positions, orders)
* Other niceties provided here 3

Takeaway: Would be nice to have more language-level functional
programming support, but Arrow is very powerful

- Disclaimer: this is not idiomatic [either {
Kotlin! val passwordHash =

. : : BCrypt.hashpw(dto.password, BCrypt.gensalt())
DSLs for Either, Option types ensure(!emailPresent(dto.email)) {

* Made possible by Kotlin DSL syntax raise(400 to "Account for “${dto.email}"
« F# computation expressions already exists")
comparison }
s D A : Either.catch {
Elthe.r‘.catch. FP idiomatic oauEry § o < [fens T
exception handling }.mapLeft { error -> //... }
* No language-level support L}

* Other niceties provided here

Takeaway: market maker initially worked itself into a tizzy that
showed how important request/response timing was

: (data class Quote(
Price. Volume val ticker: Ticker,
val bid: Int,
/6¢ 200 val ask: Int,
Asks 795¢ 15 \)
74¢ 10
3¢ spread
/1¢ 3

Bids

70¢ S

Takeaway: market maker initially worked itself into a tizzy,
showed importance of important request/response timing

Market Maker

Exchange
Service

WS: Quote was at 71¢/74¢,
MM sell orders exhausted

HTTP: Cancel all market maker orders

Takeaway: market maker initially worked itself into a tizzy,
showed importance of important request/response timing

Market Maker

Exchange
Service

WS: Quote was at 71¢/74¢,
MM sell orders exhausted

HTTP: Cancel all market maker orders

HTTP: Buy limit order at 72¢

HTTP: Sell limit order at 75¢

Takeaway: market maker initially worked itself into a tizzy,
showed importance of important request/response timing

Market Maker

Exchange
Service

WS: Quote was at 71¢/74¢,
MM sell orders exhausted

HTTP: Cancel all market maker orders

>
HTTP: Buy limit order at 72¢
HTTP: Sell limit order at 75¢
Quote
WS: New quote at 72¢/75¢ Changes

Takeaway: market maker initially worked itself into a tizzy that
showed how important request/response timing was

Price Volume

data class Quote(
val ticker: Ticker,
val bid: Int,
val ask: Int,
val triggerTimestamp:

76¢ 200
Asks 75¢ 15
74¢ 10
3¢ spread
Bids /16 °

70¢ S

Long,)

Workflow takeaway: very helpful to record setbacks in README,
and Claude served as my ‘best available reviewer’

tmpitxt] README
806 lines
ac5e8f8
T o The market order matching logic in getMarketOrderProposal could

benefit from better organization
0 From the perspective of a very blunt Jane Street trader, provide feedback on the following « The error handling could be more granular, could add:
, :

o Validation errors for order parameters

o Market condition errors (e.g., circuit breakers)

The Bad:
o System state errors (e.g., order book inconsistency)
o Your "fix" in the market maker is completely broken. You're trying to enforce a spread by - CEEErEETEED not utilised
manipulating quotes, but you're doing it wrong: o Consider Arrow's (ETTEEEEER class
kotlin

val bid = midpoint - round((quote.bid - quote.ask)/ 2.0).toInt()
This makes no mathematical sense. quote.bid - gquote.ask isalways negative for valid
quotes, so you're adding to the midpoint, not subtracting.
» You're using round() on integer arithmetic that's already been divided, which is pointless

» The spread enforcement logic assumes you want a fixed spread, but markets don't work

that way

Other takeaways: overall satisfied with lessons learned with the
technologies used, but some Kakfa annoyances

Concurrency & state

* Maintaining invariants, large state space challenge
 Downey’s ‘Little Book of Semaphores’ quite useful

Javalin

* Generally fine
* No coroutine support, Ktor better

SQLite

« Easy workflow: checking into Git, rollbacks
* Missed opportunity to use ksqlDB

Kafka

* Could not successfully place behind HTTP proxy
* VPS hosted, single-broker, keystore authentication

* Inspired my ‘Kafka in One File’ blog post
« Memory hog

Container Memory Usage

512 MiB

e AL LALLAL Lo ULl

320 MiB

256 MiB

192 MiB

128 MiB

64 MiB

OB = Il o\

e Jeedan oA s i oo e oo Aol oAk T wio e i Sl gio s\ ol o o Jo\an T sl st o bl ol o o
22:00 22:30 23:00 23:30 00:00 00:3

== portfolio-application-1-test == nginx-exporter
== podman-exporter-rootful == kafka-kraft == node-exporter

== portfolio-application-1

Final Note and Questions

* Further development possibilities

« Actual client Ul

 More event stream persistence
 More order types

* Find some way to shoehorn F# back in

* Thank you for coming to this talk!
* Questions?

